Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective

نویسندگان

  • Bo Tang
  • Haiqun Chen
  • Haoping Peng
  • Zhengwei Wang
  • Weiqiu Huang
چکیده

Graphene modified TiO₂ composite photocatalysts have drawn increasing attention because of their high performance. Some significant advancements have been achieved with the continuous research, such as the corresponding photocatalytic mechanism that has been revealed. Specific influencing factors have been discovered and potential optimizing methods are proposed. The latest developments in graphene assisted TiO₂ composite photocatalysts are abstracted and discussed. Based on the primary reasons behind the observed phenomena of these composite photocatalysts, probable development directions and further optimizing strategies are presented. Moreover, several novel detective technologies-beyond the decomposition test-which can be used to judge the photocatalytic performances of the resulting photocatalysts are listed and analyzed. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of graphene-TiO₂ composite photocatalysts, which deserves further study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts

High quality and naturally continuous structure of three-dimensional graphene network (3DGN) endow it a promising candidate to modify TiO2. Although the resulting composite photocatalysts display outstanding performances, the lacking of active sites of the 3DGN not only goes against a close contact between the graphene basal plane and TiO2 nanoparticles (weaken electron transport ability) but a...

متن کامل

Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms.

Photocatalysis has attracted worldwide attention due to its potential in solar energy conversion. As a "green" advanced oxidation technology, it has been extensively used for water disinfection and wastewater treatment. This article provides a review of the recent progress in solar energy-induced photocatalytic disinfection of bacteria, focusing on the development of highly efficient photocatal...

متن کامل

Nanospherical like reduced graphene oxide decorated TiO2 nanoparticles: an advanced catalyst for the hydrogen evolution reaction

Modification of titanium dioxide (TiO2) for H2 generation is a grand challenge due to its high chemical inertness, large bandgap, narrow light-response range and rapid recombination of electrons and holes. Herein, we report a simple process to prepare nanospherical like reduced graphene oxide (NS-rGO) decorated TiO2 nanoparticles (NS-rGO/TiO2) as photocatalysts. This modified TiO2 sample exhibi...

متن کامل

Biomolecule-mediated CdS-TiO2-reduced graphene oxide ternary nanocomposites for efficient visible light-driven photocatalysis.

We report an environmentally friendly synthetic strategy to fabricate reduced graphene oxide (rGO)-based ternary nanocomposites, in which glutathione (GSH) acts both as a reducing agent for graphene oxide and sulfur donor for CdS synthesis under modified hydrothermal (MHT) conditions. The report becomes interesting as pH variation evolves two distinctly different semiconducting nanocrystals of ...

متن کامل

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR), scanning e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2018